ЩЕЛОЧНАЯ ФОСФАТАЗА (alkaline phosphatase (alp)) 1001130, 1001131, 1001132

Для кинетического определения щелочной фосфатазы в сыворотке или плазме. (DGKC*)

IVD (для диагностики in vitro) Хранить при 2-8°C.

Код: 1001130 20х3 мл; Код: 1001131 10х15 мл: Код: 1001132 10х50 мл

ПРИНЦИП МЕТОДА

Щелочная фосфатаза катализирует гидролиз р-нитрофенилфосфата при рН 10,4 с образованием рнитрофенола и фосфата в соответствии со следующим уравнением реакции: p-нитрофенилфосфат + H₂O ——> p-нитрофенол + фосфат

Скорость образования р-нитрофенола, измеряемая фотометрически при 405 нм, прямо пропорциональна каталитической активности (концентрации) щелочной фосфатазы, присутствующей в пробе^{1,2} *) DGKC – Deutche Geselschaft fur Klinische Chemie – Германское Общество Клинической Химии.

КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ

Щелочная фосфатаза – это фермент, широко представленный во всех тканях тела человека, особенно много его в костях, печени, плаценте, кишечнике и почках. Важное клиническое значение имеют как снижение, так и повышение уровня ЩФ в плазме. Причины повышения ЩФ в плазме: болезнь Педжета, обструктивные заболевания печени, гепатиты, гепатотоксическое действие лекарств и остеомаляция. Причины снижения ЩФ в плазме: кретинизм и дефицит витамина C^{1,5,6}

Клинический диагноз не может быть поставлен по результату одного теста, он должен определяться по совокупности клинических и других лабораторных данных.

COCTAB PEACEHTOR

Реагент 1 буфер R1	Диэтаноламиновый буфер рН 10,4	1 ммоль/л
	Магния хлорид	0,5 ммоль/л
Реагент 2 субстрат R2	р-нитрофенилфосфат	10 ммоль/л

ПРИГОТОВЛЕНИЕ И СТАБИЛЬНОСТЬ

Рабочий реагент:

Код: 1001130. Разведите 1 таблетку реагента 2 (R2) в одном флаконе буфера – реагент 1 (R1).

Код: 1001131. Разведите 1 таблетку реагента 2 (R2) в 15 мл буфера (R1).

Код: 1001132. Разведите 1 таблетку реагента 2 (R2) в 50 мл буфера (R1).

Рабочий реагент стабилен 21 день при 2-8°C или 5 дней при 15-25°C.

ХРАНЕНИЕ И СТАБИЛЬНОСТЬ

Все компоненты набора стабильны до указанной на упаковке даты (expiration date) в плотно закрытом флаконе при 2-8°С, в защищенном от света месте и с соблюдением правил, предотвращающих контаминацию при использовании. Не используйте реагенты после окончания срока годности.

Признаки порчи реагентов:

- присутствие частиц или мутности.
- абсорбция бланка (А) при 405 нм ≥1,30.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

- Спектрофотометр и колориметр с фильтром 405 нм (или биохимический анализатор).
- Термостат с температурой 25, 30 или 37°C (± 0,1°C) (или биохимический анализатор).
- Соответствующие кюветы с оптическим путем 1,0 см.
- Общее лабораторное оборудование.

Сыворотка или гепаринизированная плазма¹, без гемолиза, отделить от сгустка насколько возможно быстро. Стабильность 3 дня при 2-8°C.

ПРОЦЕДУРА

1. Условия теста:

: 405 нм Длина волны Оптический путь : 1 см

Температура : 25, 30 или 37° С (Температура должна быть стабильной ($\pm 0,5^{\circ}$ С))

Измерение : против бланка по дистиллированной воде или воздуху.

Метод : кинетика по фактору (3300), время задержки 60с, время реакции 180с

2. Настройте прибор на ноль по дистиллированной воде или воздуху.

3. Подогреть рабочий реагент и кюветы до нужной температуры (25/30/37°С). Пипетируйте в кювету непосредственно перед измерением:

	Полумикрометод	Микрометод	ChemWell
Проба	20 мкл	10 мкл	4 мкл
Рабочий реагент (R1+2)	1,2 мл	600 мкл	240 мкл

4. Перемешать, инкубировать в течение 1 мин.

- 5. Измерить начальную оптическую плотность (А), затем измерять оптическую плотность каждую минуту в течение 3-х мин.
- 6. Вычислить среднее изменение оптической плотности за минуту: △А/мин.

ВЫЧИСЛЕНИЕ

Рассчитать активность щелочной фосфатазы в пробе:

 $(E/\pi) = \Delta A / Mин x 3300$

Единицы: 1 международная единица (Е/л или U/L) – это количество фермента, которое трансформирует 1 мкмоль субстрата в минуту при стандартных условиях. Концентрация выражается в единицах на литр пробы (Е/л).

Фактор для перевода международных единиц (Е/л) в единицы СИ (кат/л):

1 E/ π = 16.67 \times 10⁻⁹ κ a τ / π = 16.67 \times 10⁻³ κ

1 мккат/ $\pi = 60 E/\pi$

Коэффициенты температурной конверсии

Для коррекции результатов относительно другой температуры умножьте на:

Температура	Коэффициенты конверсии для		
исследования	25°C	30°C	37°C
25°C	1.00	1.22	2.64
30°C	0.82	1.00	1.33
37°C	0.61	0.75	1.00

КОНТРОЛЬ КАЧЕСТВА

Рекомендуется использовать контрольную сыворотку с каждой серией тестов. Мы рекомендуем контрольные сыворотки SPINTROL Normal и Pathological (Кат.№ 1002120 и 1002210). Если значения контролей выходят за указанный диапазон, проверьте прибор, реагенты и технику выполнения. Каждая лаборатория должна разработать собственную систему контроля качества и соответствующие действия, если контроли не показывают приемлемых результатов.

РЕФЕРЕНТНЫЕ ВЕЛИЧИНЫ¹

Температура исследования	25°C	30°C	37°C
Дети (1-14 лет)	<400 Е/л	<480 Е/л	<645 Е/л
Взрослые	60–170 Е/л	73–207 Е/л	98-279 Е/л

Факторы, влияющие на активность ЩФ в здоровой популяции, включают физические нагрузки, периоды усиленного роста у детей и беременность. Эти значения приведены для ориентационных целей; каждая лаборатория должна представить свои собственные значения референтного диапазона.

ХАРАКТЕРИСТИКИ ТЕСТА

Диапазон измерения: от определяемого уровня в 4,26 Е/л до предела линейности 825 Е/л.

Если полученные результаты превышают предел линейности, пробы следует разбавить 1:10 физраствором (9 г/л NaCl) и повторить исследование, полученный результат умножить на 10.

Воспроизводимость:

	Внутри серии (n=20)	
Среднее (U/L)	175	393
SD	2,28	5,48
CV (%)	1,30	1,40

Между сериями (n=20)	
176	410
4,60	10,4
2,61	2,53

Чувствительность: 1 Е/л= 0,0003 А/мин.

Правильность: Результаты, полученные с помощью реагентов SPINREACT (у) не показали систематических различий при сравнении с другими коммерческими реагентами (х).

Результаты, полученные при обследовании 50 пациентов, были следующие:

Коэффициент корреляции (r): 0,99. Уравнение регрессии. y=0.9916x - 0.4634.

Результаты оценки характеристик теста зависят от используемого анализатора.

ИНТЕРФЕРЕНЦИИ

Фториды, оксалаты, цитраты и ЭДТА ингибируют активность ЩФ и, поэтому не должны быть использованы в качестве антикоагулянтов. Гемолиз также оказывает влияние вследствие высокой концентрации в эритроцитах^{1,2}. Список лекарств и других веществ, влияющих на определение ЩФ, представлен Young et. al^{3,4}.

ПРИМЕЧАНИЕ

Реагенты могут быть использованы как на автоматических анализаторах, так и на обычных фотометрах с ручной процедурой. Процедуры для некоторых автоматических анализаторов доступны по запросу.

ЛИТЕРАТУРА:

- Wenger C. et al. Alkaline phosphatase. Kaplan A et al. Clin Chem The C.V. Mosby Co. St Louis. Toronto. Princeton 1984; 1094-1098.
- 2. Rosalki S et al. Clin Chem 1993; 39/4: 648-652.
- 3. Young DS. Effects of drugs on Clinical Lab. Tests, 4th ed AACC Press, 1995.
- 4. Young DS. Effects of disease on Clinical Lab. Tests, 4th ed AACC 2001.
- Burtis A et al. Tietz Textbook of Clinical Chemistry, 3rd ed AACC 1999.
- Tietz N W et al. Clinical Guide to Laboratory Tests, 3rd ed AACC 1995.

