Хранить при 2-8°C.

ФОСФОГЕКСОЗОИЗОМЕРАЗА (ФГИ (РНІ)) 1001370

Кинетический метод измерения в ультрафиолете (UV). G6P.

IVD (для диагностики in vitro)

Код: 1001370 20х3 мл

ПРИНЦИП МЕТОДА

Оптимизированный кинетический метод в соответствии с рекомендациями Bueding.

Фруктозо-6-фосфат > Глюкозо-6-фосфат

Глюкозо-6-фосфат + NAD $^{+}$ $\xrightarrow{G-6-PDH}$ > 6-фосфоглюконат + NADH + H $^{+}$

Скорость формирования NADH определяется измерением оптической плотности при 340 нм и прямо пропорциональна активности ФГИ (PHI) в пробе.

КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ

Фосфогексозоизомераза (ФГИ–РНІ) используется как индикатор метастазов у пациентов с карциномой груди и простаты, а также служит индикатором ответа на лечение. ФГИ онкологический маркер низкой специфичности^{4,5}. Клинический диагноз не может быть поставлен по результату одного теста, он должен определяться по совокупности клинических и других лабораторных данных.

РЕАГЕНТЫ

Реагент 1 R1	ТРИС-буфер (рН 8,5)	100 ммоль/л
буфер		
Реагент 2 R2	Фруктозо-6-фосфат	3 ммоль/л
субстрат	NAD	0,8 ммоль/л
	Глюкозо-6-PDH	1500 Е/л

ПОДГОТОВКА И СТАБИЛЬНОСТЬ

Развести одну таблетку (R2) в одном флаконе буфера Реагент 1 (R1). Тщательно перемешать до полного растворения. Разведенный реагент стабилен 30 часов при 2-8°C.

пробы

Сыворотка или плазма. ФГИ (PHI) стабильна в сыворотке до 7 дней при 2-8°C.

ОБЩИЕ УКАЗАНИЯ

Реагенты могут быть использованы с различными автоматическими биохимическими анализаторами или в ручных процедурах на фотометрах с подходящей длиной волны.

ПРОЦЕДУРА

Температура: 25 / 30 / 37°C

Длина волны: 340нм

Кювета: оптический путь 1 см

Бланк: против воздуха или дистиллированной воды.

Метод: кинетика по фактору (2540), время задержки 180 с, время реакции 180 (60) с

Непосредственно перед измерением:

Transale Harrarina makali mamakannami				
Закапать в кюветы	Макро метод	Микро метод	ChemWell	
Проба	100 мкл	33 мкл	10 мкл	
Рабочий реагент	1,5 мл	0,5 мл	150 мкл	

Перемешать, измерить оптическую плотность через 3 минуты при 30/37°С или через 5 минут при 25°С. Затем измерить увеличивающуюся оптическую плотность каждую минуту в течение 3-х минут. Рассчитать среднее изменение оптической плотности за минуту (△А/мин).

РАСЧЕТ

ФГИ (PHI) $E/\pi = \Delta A/M$ ин x 2540

Фактор для перевода Е/л в единицы СИ (кат/л): 1 Е/л = 16.67 нкат/л; 1 мккат/л = 60 Е/л.

ЛИНЕЙНОСТЬ

Если среднее ∆А/мин при 340нм больше 0,090 (≈229 Е/л), пробы должны быть разведены физраствором (0,9% хлорида натрия) в отношении 1:5, полученное разведение используйте в качестве пробы. Результат измерения умножьте на 5 (коэффициент разведения).

РЕФЕРЕНСНЫЕ ВЕЛИЧИНЫ (Е/Л)

25°C 30°C 37°C до 75 Е/л до 95 Е/л **до 110 Е/л**

Настоятельно рекомендуется в каждой лаборатории устанавливать свой диапазон нормальных значений.

ВНИМАНИЕ

Гемолиз будет мешать определению.

КОНТРОЛЬ КАЧЕСТВА

Рекомендуется использовать контроли с каждой серией проб. Мы рекомендуем контрольные сыворотки SPINTROL Normal и Pathological.

ЛИТЕРАТУРА:

1. Bueding E. Mackinnon J. Biol. Chem., 215-507, 513 (1955).